1С:Виртуальная лабораториягруппа разработки творческих конструкторских сред |
Математический конструкторлучшая российская программа динамической математики |
Мы предлагаем
наши продукты и сервисы
|
Примеры моделей
какие бывают модели
|
Как использовать модели
на занятиях и в учебных пособиях
|
Помощь пользователям
учимся работать с моделями
|
О программе
команда и партнеры
|
ТИПОЛОГИЯ УЧЕБНЫХ МОДЕЛЕЙ |
||||||||||||||||||||||||
Примеры моделей 1. Иллюстрации 2. Манипулятивные модели 3. Конструктивные задания 4. Задания с проверкой 5. В роли учителя 6. Виртуальные эксперименты |
2. Манипулятивные модели для исследованияПри создании статичных чертежей специфические возможности «Математического конструктора» используются лишь в небольшой степени. Мы уже отметили ключевую особенность построений в среде динамической геометрии: любые чертежи в «Математическом конструкторе», в отличие от начерченных на бумаге или на классной доске, относятся не к индивидуальной геометрической фигуре, а к целому непрерывному семейству фигур. 2.1. Совершаем открытиеУченика вряд ли удивит, что при деформации треугольника луч, построенный как биссектриса его угла, всегда будет делить этот угол пополам – ведь именно так этот луч и построен. Но если провести все три биссектрисы, то мы увидим, что они будут всегда пересекаться в одной точке, хотя эту точку мы и не строили – она возникла «сама». А это уже маленькое геометрическое открытие! И такое открытие может перевернуть весь ход урока – от заунывного изложения «фактов», пусть даже сопровождаемого пассивным иллюстрированием, вы переходите к активному стимулированию творческого потенциала учеников, развиваете в них навык видеть, формулировать и понимать геометрические закономерности, существенно увеличиваете степень эмоциональной вовлеченности и запоминаемость изучаемого материала. Вот более сложная модель такого типа.
2.2. Ставим численный экспериментВсе расстояния, углы и площади в «Математическом конструкторе» легко измеряемы. Это позволяет проводить численные экспериментальные наблюдения, которые могут вести к самостоятельному открытию тех или иных фактов.
2.3. Открываем «чёрный ящик»Нравятся ученикам и задания типа «черный ящик», в которых, наблюдая за изменениями одних элементов чертежа при перемещении других элементов, учащиеся должны разгадать скрытый связывающий их «механизм». Например: дана фигура и ее образ при некотором движении. Требуется указать вид движения и его параметры.
2.4. Выбираем правильный ракурсСпецифическим классом задач, в которых манипулирование компьютерной моделью предоставляет ученику качественно новые возможности, являются стереометрические чертежи. Развитие пространственного воображения – одна из важнейших целей при изучении стереометрии. Нередко в стереометрической задаче достаточно взглянуть на пространственную конструкцию с нужной точки – и принцип решения станет понятен без долгих объяснений.
2.5. Ищем экстремумИзменчивость динамических моделей даёт возможность исследовать различные граничные и экстремальные ситуации. Предположим, например, что вы построили треугольник по трём заданным сторонам. Вы начинаете менять их длины, и треугольник вдруг исчезает. Это естественным образом приводит к важному вопросу об условии, при котором треугольник с заданными длинами сторон существует. В примере ниже представлена знаменитая задача Герона о кратчайшем пути, который начинается в заданной точке, достигает заданной прямой и заканчивается в другой точке, лежащей по ту же сторону от прямой, что и первая. Студенты должный найти решение с помощью численного эксперимента. В случае затруднения они могут воспользоваться подсказками.
2.6. Исследуем геометрическое место точекВ «Математическом конструкторе» имеется возможность исследования геометрического места точек. Изучать возможные положения точек можно как при помощи рисования растрового следа точек, так и создавая специальный объект – Геометрическое место точек (ГМТ). Возможность динамического исследования ГМТ открывает новую обширную область для экспериментов и исследования – разнообразные кривые. Преимущества, которые здесь обеспечивает компьютер, очевидны.
Мы смоделировали известную задачу о «котенке на лестнице». Модель позволяет не только увидеть траекторию точки на отрезке постоянной длины, скользящем своими концами по сторонам прямого угла (эллипс), но и проследить за ее эволюцией при изменении положения точки. Когда точка в середине отрезка эллипс превращается в окружность, что несложно доказать. 2.7. Исследуем графики функцийОчень полезной, особенно в связи с алгебраическими задачами с параметрами, является возможность построения графиков функций, зависящих от параметра, и исследования их при изменении параметра. В качестве примера вернемся к уравнению, рассмотренному в п. 1.3, заменив в нем основания логарифма и степени произвольным числом.
Модель позволяет увидеть качественную картину зависимости числа корней от параметра и приближенно определить значения параметра a, при которых оно изменяется. Точное решение – отдельная задача, в которой компьютер выступает лишь подспорьем (и это хорошо!).
|
© ООО «1С-Паблишинг», 2007–2022 © ООО «Виртуальная лаборатория», 2009–2022 |
Пишите нам |